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 A B S T R A C T

This paper presents a novel Weather-Adaptive Fuzzy Control (WAFC) strategy to dynamically 
manage indoor temperature and humidity setpoints for improved energy efficiency in urban 
buildings. The main contribution lies in integrating external weather data, electricity prices, 
and occupancy levels within a fuzzy control framework to continuously align indoor setpoints 
with varying outdoor conditions. The WAFC utilizes external weather conditions, electricity 
prices, and occupancy levels to adapt the setpoints of a building’s Heating, Ventilation, and Air 
Conditioning (HVAC) system. A key innovation of this approach is the adaptive alignment of 
indoor conditions with outdoor temperatures and humidity levels, allowing the HVAC system 
to adjust to changing environmental conditions effectively. The Fuzzy Logic Controller (FLC) 
calculates a control variable (𝑤) to determine optimal setpoints, balancing energy use with 
occupant comfort. The WAFC is compared to a traditional fixed setpoint strategy, with results 
indicating that the WAFC significantly reduces heating and humidification demands, particularly 
in high Air Changes per Hour (ACH) conditions. Although cooling and dehumidification 
demands are increased under smart control during the summer, the total annual energy savings 
achieved by WAFC was 274 kW-hr m−2 for a typical detached residential house in Toronto, 
demonstrating its potential for enhancing energy efficiency. Sensitivity analyses demonstrate 
that WAFC effectively reduces energy consumption for diverse building types, particularly for 
older, less airtight buildings. The findings suggest that weather-adaptive setpoint control can 
significantly enhance the sustainability of HVAC operations, providing a practical solution for 
energy efficiency in urban environments.

1. Introduction

According to a 2023 report by the International Energy Agency (IEA), in 2022, buildings accounted for 30% of global final energy 
consumption, a significant share of the total energy consumption across various sectors, with space heating and cooling representing 
the largest energy consumption end uses in the building sector. As the global energy demand reached 440 EJ, energy consumption 
in buildings rose by an average of 1.1% per year from 2010 to 2022. In cold climates, space heating is the dominant energy use in 
buildings, with floor area projected to expand from 157 billion m2 in 2022 to 170 billion m2 by 2030. Meanwhile, space cooling is 
seeing the fastest growth, fueled by rising incomes, especially in developing economies, and the increasing intensity of heat waves. 
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Despite significant efficiency improvements, space cooling remains a growing source of energy demand due to the rapid adoption 
of air conditioners [1].

In addition, electrification plays a critical role in reducing the environmental impact of heating and cooling in buildings. Heat 
pumps, for instance, are emerging as a more energy-efficient alternative to gas boilers, using three to five times less energy. In 
2022, heat pumps met 12% of global space heating demand, and this share is expected to more than double to 25% by 2030 in the 
IEA’s Net Zero Emissions (NZE) scenario. The increasing adoption of these technologies, combined with improvements in energy 
efficiency, is essential for reducing both energy consumption and emissions in the building sector. While challenging power grids, 
the shift to renewable energy sources, particularly electricity from renewable sources, is expected to offer consumers greater control 
and flexibility through demand response systems, helping to align with global sustainability goals [2].

As these trends highlight the importance of energy-efficient technologies in managing building energy use, the focus on effectively 
controlling Heating, Ventilation, and Air Conditioning (HVAC) systems becomes even more critical [3]. HVAC systems are not 
only responsible for significant energy consumption but also play a key role in maintaining a comfortable and healthy indoor 
environment. To achieve this balance, optimizing the performance of these systems is essential, particularly in terms of how they 
regulate indoor climate conditions [4]. Among various factors such as temperature, humidity, lighting, and air quality, that influence 
Indoor Environmental Quality (IEQ) [5] and thermal comfort [6–8], temperature and humidity are the most critical parameters. 
Proper control of these variables ensures a comfortable indoor climate and prevents damage to building and HVAC equipment by 
adjusting HVAC operations according to occupancy and external conditions [9,10]. Setpoint control is a fundamental aspect of HVAC 
system operation. It involves establishing desired values for temperature and humidity, which the control system strives to maintain. 
By optimizing setpoints, building operators can reduce energy consumption without compromising indoor conditions [11].

A variety of methods have been employed to regulate the desired temperature or humidity within a space, a process commonly 
referred to as setpoint control. Traditional approaches to setpoint control often involve the use of continuously operating thermostats 
that maintain a fixed temperature or humidity [12,13]. Unfortunately, this method may prove inadequate in adapting to fluctuating 
conditions or dynamic occupancy patterns. Another common strategy is to utilize programmable thermostats or humidistat that 
adhere to pre-determined schedules created by building occupants. While this approach offers some flexibility, it also presents 
drawbacks. Occupants may be reluctant to invest the time and effort required to meticulously program and adjust thermostats or 
humidistats [14]. Additionally, there is often a discrepancy between planned occupancy schedules and actual usage patterns, which 
can lead to unnecessary heating or cooling and increased energy consumption. Research studies have yielded inconsistent results 
regarding the impact of constant or programmable setpoints on energy savings, with some investigations demonstrating positive 
effects and others revealing negative consequences. Recent advancements in sensor technology and the Internet of Things (IoT) 
have facilitated the development of thermostats and humidistats equipped with reactive controllers. These controllers possess the 
ability to dynamically adjust setpoints in real time based on changes in occupancy levels. However, a delay inevitably occurs between 
the detection of increased occupancy and the HVAC system’s response, prompting the emergence of predictive controller systems.

Over the years, various control strategies have been developed to manage energy consumption in buildings, each with its 
advantages and limitations. Among the most commonly used methods are On/Off [15], Proportional-Integral-Derivative (PID) 
control [16], Model Predictive Control (MPC) [17–19], Fuzzy Logic Control (FLC) [20–22], as well as hybrid approaches that 
combine these techniques [23,24].

Proportional-Integral-Derivative (PID) and On/Off Controls are among the oldest and most widely used control strategies in 
HVAC systems due to their simplicity, ease of implementation, and low initial cost [25]. On/Off Control can be either zero (Off) 
or maximum (On), which makes it less accurate [15]. PID controllers work by adjusting control outputs based on the error 
between a desired setpoint and the actual system output, using a combination of proportional, integral, and derivative actions. 
While effective for linear systems, PID control struggles with the nonlinearities, time delays, and uncertainties often present in 
Building Energy Management Systems (BEMS). Additionally, PID controllers require extensive tuning and calibration, limiting 
their adaptability to changing conditions for instance the tuning process for Multi Input and Multi Output (MIMO) processes is 
sometimes impossible [26]. These limitations can lead to suboptimal performance in complex BEMS applications [27]. Model 
Predictive Control (MPC) offers a more sophisticated approach by predicting future system behavior based on a dynamic model 
and optimizing control actions accordingly. MPC is particularly well-suited for complex, multi-variable systems where interactions 
between variables and constraints need to be managed [28]. However, the implementation of MPC in BEMS is challenged by its high 
computational demands and the need for an accurate system model, which can be difficult to obtain in real-world settings [15,29]. 
FLC provides an alternative by mimicking human decision-making processes [30,31]. Unlike traditional controllers, FLC does not 
rely on precise mathematical models but instead uses a set of fuzzy rules to handle the inherent uncertainties and nonlinearities in 
BEMS [32]. This makes FLC particularly effective in maintaining thermal comfort in dynamic environments, where conditions may 
change unpredictably [33]. Moreover, hybrid control strategies, such as Fuzzy-PID and Neural Network-based MPC (NN-MPC), have 
been developed to combine the strengths of these individual methods. Fuzzy-PID control, for instance, enhances the adaptability 
of traditional PID controllers by using FLC to adjust the control parameters in real-time, improving performance in systems with 
varying dynamics [34]. NN-MPC integrates neural networks within the MPC framework to approximate complex system models, 
offering a more flexible and robust control solution [35]. FLC’s ability to handle uncertainties, adapt to changing conditions, and 
operate without requiring a precise mathematical model makes it particularly well-suited for the dynamic and complex nature of 
BEMS [36,37]. A recent study further extended FLC by integrating it with Long Short-Term Memory (LSTM) networks, achieving 
improved predictive control for variable stiffness structures under seismic excitations [22].

Recently, Barte et al. [38] developed an automatic temperature and humidity control system for a tarantula terrarium using 
an FLC algorithm. This system ensures the maintenance of optimal environmental conditions, which are crucial for the health of 
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invertebrates like tarantulas. By utilizing FLC to control devices such as heat lamps, fans, and water pumps, the system was able to 
regulate temperature and humidity with minimal error, outperforming manual methods. The success of this system highlights the 
potential of FLC in managing sensitive environmental parameters.

In another recent study, Shao et al. [39] proposed a Weights-Based Fuzzy Logic Control Algorithm (WBFLCA) to enhance 
temperature and humidity control in direct expansion air-conditioning systems. The approach simplifies FLC by using weighted 
control rules, enabling decoupled and efficient management of both parameters. The study identified optimal weight combinations 
that improve system response and control stability, showcasing the potential for energy-efficient climate control in buildings.

The literature on humidity control is notably less extensive than that on temperature control. Some studies, such as Zhang 
et al. [40], have examined humidity control but omitted key factors relevant to human comfort. Their approach, which includes 
monitoring CO2 concentration, temperature, condensation risk, and Relative Humidity (RH), uses dehumidifier and natural 
ventilation; however, humidity is the last criterion considered, with a maximum threshold of 88%, a notably high level that far 
exceeds ASHRAE 62.1 recommendations [41], where 65% is the advised upper limit for comfort and safety. Moreover, Zhang et al. 
[40] primarily focus on hot and humid conditions and regions, with minimal attention to year-round control or other climate zones. 
The high threshold for humidity also indicates a lack of focus on condensation and mold growth risks, as an RH of 88% could 
increase susceptibility to these issues.

To the best of our knowledge, most existing controllers and smart building research [42] focus on systems that adjust indoor 
setpoints based on sensor data, particularly occupancy detection [43]. These smart building systems typically adapt setpoints based 
on the presence or absence of occupants or use zone-based HVAC control to optimize comfort in specific areas. The intelligence 
of these HVAC systems is largely limited to detecting changes in occupancy level and responding accordingly, often ignoring other 
influential environmental factors [44]. However, the concept of a physically intelligent building, one that is environmentally aware 
and adapts indoor setpoints based not only on occupancy but also on real-time outdoor conditions, electricity pricing, and latent 
heat loads, remains underexplored in the current literature. Such an approach, integrating both internal and external factors, has 
the potential to significantly improve energy efficiency and overall comfort, addressing gaps that conventional smart building 
technologies have yet to address.

Furthermore, conventional temperature and humidity control strategies in HVAC systems typically rely on maintaining indoor 
conditions at fixed comfort setpoints or setbacks, often based solely on occupancy detection. This static approach neglects 
opportunities to leverage favorable outdoor conditions, even when they align well with indoor comfort requirements, leading to 
suboptimal energy performance. Such systems fail to capitalize on naturally occurring temperature and humidity levels that could 
otherwise be utilized to reduce HVAC loads, resulting in unnecessary energy consumption and inefficiency.

In this study, we introduce a novel Weather-Adaptive Fuzzy Control (WAFC) strategy that dynamically adjusts indoor temperature 
and humidity setpoints based on real-time data, including outdoor conditions, occupancy levels, and electricity prices. This approach 
moves beyond traditional static setpoints by incorporating a more comprehensive understanding of building’s internal and external 
environment, providing a holistic optimization of HVAC performance. Unlike conventional systems, WAFC adapts continuously, not 
only during peak occupancy periods but also during energy-saving modes, allowing the indoor environment to converge with the 
outdoor climate whenever it is beneficial. This adaptive alignment reduces energy use while maintaining acceptable comfort levels, 
effectively utilizing natural opportunities for efficiency gains.

Moreover, WAFC addresses several key gaps in traditional control approaches. It considers both sensible and latent loads 
comprehensively, ensuring that humidity and temperature control are integrated in a way that optimizes both energy efficiency and 
occupant comfort. This represents a significant advancement in HVAC setpoint decision-making, integrating external environmental 
data to enable an environmentally-aware and physically intelligent building.

The remainder of this paper is structured as follows. In Section 2, the methodology is outlined, including a detailed description of 
the model and the proposed Weather-Adaptive Fuzzy Control (WAFC) strategy. Section 3 presents the results and discussion, where 
we analyze the performance of the WAFC and provide insights into its effects on energy efficiency, considering both sensible and 
latent loads. Finally, Section 4 concludes the paper with a summary of findings and offers recommendations for future research.

2. Methodology

2.1. Model description

Urban physics is simulated in this study by employing the Vertical City Weather Generator (VCWG v3.0.0) software (Fig.  1). 
VCWG is a multi-physics, micro-scale model that predicts urban climate and building performance by parameterizing key physical 
processes. VCWG integrates system-level models to simulate momentum, heat, humidity, and water exchanges across soil, urban 
surfaces, and the atmosphere, with options for including alternative energy systems. VCWG integrates models using the Resistance 
Capacitance (RC) thermal network, Navier–Stokes transport modeling in the vertical direction, Monin-Obukhov Similarity Theory 
(MOST), and bulk energy modeling paradigms [45]. As shown in Fig.  1, VCWG consists of several sub-models, including rural MOST 
model, urban vertical transport model, radiation model, building energy model, and rural/urban soil and surface energy balance 
models. Full descriptions of the model are provided in earlier publications [46–51]. The weather boundary conditions for VCWG 
are generated using another software titled the Vatic Weather File Generator (VWFG v1.0.0), which uses the ERA5 dataset from 
the European Centre for Medium-Range Weather Forecasts (ECMWF). VWFG provides data in the EnergyPlus Weather (EPW) file 
format at hourly resolution that is required by VCWG. The forcing weather files are associated with a rural site in the vicinity of 
each city [52]. The VCWG’s results for a base building have been validated against observations of gas and electricity consumption 
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Fig. 1. Illustration of the Vertical City Weather Generator (VCWG v3.0.0) model and the constituent sub-models.

Table 1
Building features for Climate Zones (CZ) 5 from codes and standards.
 Parameter Toronto (CZ5) 
 Roof resistance [m2 K W−1] 6.41  
 Wall resistance [m2 K W−1] 3.6  
 Window U-value [W m−2 K−1] 1.9  
 Infiltration rate [ACH] 3.0  
 Ventilation rate [L s−1 m−2] 0.3  
 Glazing ratio [–] 0.4  
 Solar heat gain coefficient [–] 0.4  

in London, Ontario, Canada, for a full year in 2019 [53]. This paper extends the model by integrating a Fuzzy Logic Controller 
(FLC). The model is developed and run for Toronto for the full year of 2020.

Fig.  1 shows the arrangement of single detached residential buildings considered in this study. Such houses are prevalent in North 
America and account for 52.6% and 64% of residential building stock in Canada [54] and the United States [55], respectively. 
The building features for each city are based on common codes and standards such as the National Energy Code of Canada 
for Buildings (NECB) [56], the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 62.1 [41], 
ASHRAE 62.2 [57], ASHRAE 90.1 [58], and ASHRAE 90.2 [59]. Table  1 shows the code and standard values for the base building 
features that we have used in our study.

The buildings are arranged in rows with a separation of 30 m maintained in each horizontal direction (𝑥 and 𝑦). Temperature, 
specific humidity, and wind (the 𝑥 and 𝑦 components) data within the urban roughness sub-layer were extracted along the vertical 
direction (𝑧) from VCWG. The buildings are low-rise residential units designed with dimensions of 13.8 m × 13.8 m × 6 m. Each 
storey features two windows on each side, with an equivalent area of 26.4 m2 per facade.

2.2. Building energy and environmental loads

The sensible load of the building, involves ventilation load 𝑄vent, infiltration load 𝑄inf, internal heat from occupants and 
equipment 𝑄int, heat from the building’s mass 𝑄mass, heat from walls 𝑄wall, heat from ceilings 𝑄ceil, heat conduction through 
windows 𝑄win, and radiant heat passing through windows 𝑄tran [W], 

Sensible Load = ±
[

𝑄 +𝑄 +𝑄 +𝑄 +𝑄 +𝑄 +𝑄 +𝑄
]

. (1)
vent inf int mass wall ceil win tran
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In this formulation, the positive sign (+) will be used to calculate the sensible cooling demand, and the negative sign (−) will 
be used to calculate the sensible heating demand. Except for 𝑄int, which is scheduled in VCWG, the other terms are parameterized 
using the heat balance method:

𝑄vent = 𝑉vent𝜌𝑎𝑐𝑝𝑎(𝑇outdoor − 𝑇set)

𝑄inf = 𝑉inf𝜌𝑎𝑐𝑝𝑎(𝑇outdoor − 𝑇set)

𝑄mass = 𝐴buiℎ𝑚(𝑇mass − 𝑇set)

𝑄wall = 𝐴wallℎ𝑤(𝑇wall − 𝑇set)

𝑄ceil = 𝐴buiℎ𝑐 (𝑇ceil − 𝑇set)

𝑄win = 𝐴win𝑈𝑤(𝑇outdoor − 𝑇set)

𝑄tran = 𝐴win𝑆 × 𝑆𝐻𝐺𝐶, (2)

where 𝑉vent and 𝑉inf [m3 s−1] are ventilation and infiltration air flow rates, 𝜌𝑎 [kg m−3] is density of air, 𝑐𝑝𝑎 [J kg−1 ◦C−1] is heat 
capacity of air, 𝑇mass, 𝑇wall, 𝑇ceil, 𝑇set, and 𝑇outdoor [◦C] are mass, wall, ceiling, set-point, and outdoor temperatures, 𝐴bui, 𝐴wall, and 
𝐴win [m2] are building footprint, wall, and window areas, ℎ𝑚, ℎ𝑤, and ℎ𝑐 [W m−2 ◦C−1] are convective heat transfer coefficients, 
𝑈𝑤 [W m−2 ◦C−1] is the window U-value, 𝑆 [W m−2] is the shortwave radiation flux through the window, and 𝑆𝐻𝐺𝐶 [-] is Solar 
Heat Gain Coefficient for the window, which is a constant. 𝑆𝐻𝐺𝐶 [-] is based on code and standard values. However, a detailed 
two-dimensional radiation balance model predicts the shortwave and longwave radiation fluxes on each building surface (including 
the wall). The radiation model also predicts incident angles for these fluxes as well as shading effects from trees and other buildings. 
This model utilizes view factors and a Monte-Carlo ray tracing methodology [47]. However, incident angle effects on 𝑆𝐻𝐺𝐶 [-] 
are not considered. This approach simplifies the modeling process, while it does account for dynamic variations of radiative fluxes 
due to weather, solar position, or shading. Future work could explore adaptive 𝑆𝐻𝐺𝐶 [-] values to improve accuracy. These loads 
are met by the building’s sensible cooling/heating equipment. The latent load, 

Latent Load = ±
[

𝑄latvent +𝑄latinf +𝑄latint
]

, (3)

involves latent heat from ventilation 𝑄latvent, latent heat from infiltration 𝑄latinf, and latent heat from internal heat from occupants 
and equipment 𝑄latint [W]. In this formulation, the positive sign (+) will be used to calculate the dehumidification demand, and the 
negative sign (−) will be used to calculate the humidification demand. These loads are met by the building’s humidification/dehu-
midification equipment. Except for 𝑄latint, which is scheduled in VCWG as a fraction of sensible heat from occupants and equipment 
𝑄int, the other terms are parameterized using the humidity balance method:

𝑄latvent = 𝑉vent𝜌𝑎𝐿𝑣(𝑞outdoor − 𝑞set)

𝑄latinf = 𝑉inf𝜌𝑎𝐿𝑣(𝑞outdoor − 𝑞set),

where 𝐿𝑣 [J kg−1𝑣 ] is latent heat of vaporization for water, and 𝑞outdoor and 𝑞set [kg𝑣 kg−1] are outdoor and set-point specific 
humidities, respectively.

Following the sign conventions discussed above, the heat balance equation can be rewritten in the following form, which 
separates terms including or excluding the unknown indoor temperature 

Cooling Load −Heating Load −𝑄tran −𝑄int
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄

= 𝑄vent +𝑄inf +𝑄mass +𝑄wall +𝑄ceil +𝑄win (4)

𝑄 = 𝑉vent𝜌𝑎𝑐𝑝𝑎𝑇outdoor + 𝑉inf𝜌𝑎𝑐𝑝𝑎𝑇outdoor + 𝐴buiℎ𝑚𝑇mass + 𝐴wallℎ𝑤𝑇wall + 𝐴buiℎ𝑐𝑇ceil + 𝐴win𝑈𝑤𝑇outdoor
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐻1

(5)

− [𝑉vent𝜌𝑎𝑐𝑝𝑎 + 𝑉inf𝜌𝑎𝑐𝑝𝑎 + 𝐴buiℎ𝑚 + 𝐴wallℎ𝑤 + 𝐴buiℎ𝑐 + 𝐴win𝑈𝑤
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐻2

]𝑇indoor.

Likewise the specific humidity balance equation can be rewritten as the following form, which separates terms including or excluding 
the unknown indoor specific humidity 

Dehumidification Load −Humidification Load −𝑄latint
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑄𝐿

= 𝑄latvent +𝑄latinf (6)

𝑄𝐿 = 𝑉vent𝜌𝑎𝐿𝑣𝑞outdoor + 𝑉inf𝜌𝑎𝐿𝑣𝑞outdoor
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐻𝐿1

−[𝑉vent𝜌𝑎𝐿𝑣 + 𝑉inf𝜌𝑎𝐿𝑣
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐻𝐿2

]𝑞indoor. (7)

In VCWG v3.0.0, the resulting two equations 𝑇indoor = (𝐻1−𝑄)∕𝐻2 and 𝑞indoor = (𝐻𝐿1−𝑄𝐿)∕𝐻𝐿2 are re-evaluated in each timestep 
to give the indoor temperature and specific humidity.
5 
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Fig. 2. Illustration of the comfort and setback ranges for indoor temperature and humidity. The figure defines the acceptable ranges for maintaining comfort 
used to adjust indoor conditions. In this figure, HH, H, L, and LL represent HighHigh, High, Low, and LowLow, respectively [10,41,58,60].

Fig. 3. Flowchart illustrating the integration of the Weather-Adaptive Fuzzy Control (WAFC) with the Vertical City Weather Generator (VCWG v3.0.0) software. 
The diagram outlines the process of dynamically adjusting temperature and humidity setpoints based on occupancy, energy price, and external conditions.

2.3. Weather-Adaptive Fuzzy Control (WAFC)

This study introduces Weather-Adaptive Fuzzy Control (WAFC), a novel real-time strategy that dynamically adjusts indoor 
temperature and humidity setpoints to optimize energy efficiency and comfort. This method has been integrated with the VCWG 
software according to the flowchart in Fig.  3. The core principle of this method is to closely track external conditions and adjust 
the indoor setpoint accordingly whenever feasible. The VCWG model first calculates the building parameters based on the previous 
setpoint. If the outdoor temperature/humidity falls within the comfort range, the indoor setpoint converges to the outdoor condition. 
However, if the outdoor temperature/humidity is outside the comfort range, the FLC controller determines whether the indoor 
setpoint should converge to the comfort or setback conditions, based on the sign of a control variable 𝑤 to be positive or negative. The 
controller, generates new setpoints for temperature and humidity. The approach integrates a fuzzy inference system that evaluates 
external factors using linguistic variables, enabling adaptive control of indoor conditions for improved energy savings. The comfort 
ranges are defined in Fig.  2 for humidity and temperature. These ranges are obtained from [10,41,58,60]. It should also be noted 
that the basic thermostat mode for cooling setpoint is 27 ◦C and for the heating setpoint is 22 ◦C.

According to the FLC process diagram illustrated in Fig.  8, which follows Mamdani’s Fuzzy Inference System (FIS) [61], the 
controller employs FLC to determine the 𝑤 parameter that governs the adaptation of setpoints.

To do so, first, the system uses predefined membership functions to assess the input’s degree of membership. The controller 
uses two fuzzy variables: occupancy level [Person m−2] and time of day [hr]. It is assumed in this study that maximum five 
6 
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Fig. 4. Fuzzy membership functions for the occupancy variable in the building. The functions are categorized into low, medium, and high occupancy levels, 
using trapezoidal and triangular shapes to represent varying degrees of occupancy.

Table 2
Time-Of-Use (TOU) electricity pricing scheme.
 TOU period Summer hours Winter hours  
 Off-peak From 7 p.m. to 7 a.m. From 7 p.m. to 7 a.m.  
 Mid-peak From 7 a.m. to 11 a.m., 5 p.m. to 7 p.m. From 11 a.m. to 5 p.m.  
 On-peak From 11 a.m. to 5 p.m. From 7 a.m. to 11 a.m., 5 p.m. to 7 p.m. 

persons are living in a residential-detached house of 100 m2 with three membership functions as: Low, Medium, and High, using 
trapezoidal/triangular shapes to capture varying levels of occupant presence (Fig.  4). These membership functions overlap to ensure 
smooth transitions between categories, avoiding abrupt changes in system behavior. Low occupancy corresponds to sparse presence, 
where the membership function peaks for values below 0.01 Person m−2. Medium occupancy covers moderate presence, with its 
membership function peaking between 0.01 and 0.03 Person m−2. High occupancy represents dense presence, with its membership 
function dominating above 0.03 Person m−2 (Fig.  4).

For electricity price we have used the Time-Of-Use (TOU) pricing scheme in Ontario, Canada, as an example reflecting different 
electricity costs during different periods of the day and season, for which the details can be found in Table  2. It is important 
to note that the differences in electricity prices between Winter and Summer, as well as between weekdays and weekends, have 
been accounted for in this study. The electricity price in the fuzzy logic system is represented by three membership functions: 
Low, Medium, and High, using trapezoidal shapes (Figs.  5 and 6). Low price corresponds to off-peak hours, with the membership 
function peaking for the lowest electricity rates (Row Number 1 in Table  2). Medium price is associated with mid-peak hours and 
is represented by a trapezoidal membership function, peaking during medium electricity pricing levels (Row Number 2 in Table  2). 
High price corresponds to on-peak hours, where the membership function dominates for the highest electricity rates (Row Number 
3 in Table  2). In this membership function, the 𝑥-axis represents time, and the 𝑦-axis represents the degree of membership. For 
example, in Ontario, during Summer, as shown in Table  2, the medium peak price occurs from 7 a.m. to 11 a.m. and again from 
5 p.m. to 7 p.m. Consequently, in the membership function (Fig.  5), these two time periods correspond to the medium degree of 
membership, while the degrees of membership for low and high prices are zero during these intervals.

Following the fuzzy inference process, we apply the fuzzy rules defined in Table  3 to the fuzzified input variables (electricity 
price and occupancy level) to determine the output variable 𝑤. Factor 𝑤 which governs HVAC setpoint adjustments, is defined 
using three triangular membership functions: Negative (N), Zero (Z), and Positive (P). The Negative (N) category corresponds to 
scenarios where the indoor setpoint converges toward outdoor or setback conditions, prioritizing energy savings. The Positive (P) 
category represents adjustments toward comfort conditions, ensuring occupant comfort. Zero (Z) indicates no change in the setpoint, 
maintaining current indoor conditions.

To illustrate the application of the FLC in our study, a brief example of its setpoint control mechanism is provided in the Winter. 
For the two input variables, occupancy and energy price, two distinct sets of membership functions are defined, as depicted in Fig. 
8. These functions assign a membership value to each element of a fuzzy set (Low, Medium, and High) for each physical input, 
effectively translating numerical data into symbolic representations. For instance, given a scheduled occupancy of 0.01 Person m−2

at 10:00 a.m., the corresponding degrees of membership for Occupancy and Electricity Price are (1 Low, 0 Medium, and 0 High) 
and (0 Low, 1 High, and 0 Medium), respectively.

In this scheme we have different sets of control rules for heating, cooling, humidification, or dehumidification. The rules are 
outlined in Table  3, which differentiate between weekday and weekend strategies for the Summer and Winter. Specifically, weekend 
7 
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Fig. 5. Fuzzy membership functions for the price variable in Summer, which reflects the cost of electricity. The categories include low, medium, and high price 
ranges, representing different time-of-use pricing periods throughout the day.

Fig. 6. Fuzzy membership functions for the price variable in Winter, which reflects the cost of electricity. The categories include low, medium, and high price 
ranges, representing different time-of-use pricing periods throughout the day.

rules do not account for electricity price fluctuations since rates remain constant throughout the day and night. In contrast, heating 
and humidification rules are not dependent on electricity price fluctuations, as these processes utilize natural gas in the HVAC 
system. Given that gas prices remain constant throughout the day and night in Canada, gas prices have not been considered a 
fuzzy input for these processes. Conversely, cooling and dehumidification require a refrigeration cycle, and thus electricity, so the 
corresponding rules depend on electricity price. In this table N means the setpoints should converge to outdoor conditions, P means 
the setpoints should converge to comfort levels, and Z means no change.

Regarding Table  3 for cooling during weekdays, when occupancy is low and the electricity price is low, medium, or high, the 
system should attempt to converge to the outdoor conditions, which is likely higher than the indoor and comfort setpoints. This 
corresponds to the linguistic variable N in our rule definition. In this scenario, energy efficiency takes precedence over comfort 
considerations when occupancy is low. Subsequently, when occupancy is medium and the price is low, the system converges to the 
comfort level P, while a medium price results in no change Z, and a high price increases convergence to the outdoor level N. Finally, 
high occupancy with low, medium, and high prices prompts convergence to the comfort level P.

Different aggregation methods, such as Min (AND), Max (OR), and Product, can be utilized depending on the specific 
requirements of a problem. In our application, we have selected the Max (OR) operator to ensure that the system can respond 
8 
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Table 3
Combined rules for HVAC adjustments based on occupancy presence, electricity price, and day type (weekdays 
and weekends): N: Converging to outdoor, Z: No change, P: Converging to comfort setpoint.
 Function Day type Occupancy Electricity price 𝑤 Adjustment 
 Cooling/Dehumidification Weekday Low Low N  
 Low Medium N  
 Low High N  
 Medium Low P  
 Medium Medium Z  
 Medium High N  
 High Low P  
 High Medium P  
 High High P  
 Weekend Low – N  
 Medium – Z  
 High – P  
 Heating/Humidification All days Low – N  
 Medium – Z  
 High – P  

Fig. 7. Fuzzy membership functions for temperature and humidity setpoints’ adjustments. Both temperature and humidity adjustments use similar membership 
functions categorized into Negative (N), Zero (Z), and Positive (P) to guide the control of HVAC system setpoints.

effectively to either high electricity prices or low occupancy levels, whichever is more critical at a given time. This approach 
provides flexibility and ensures that the temperature and humidity setpoints are adjusted based on the most significant influencing 
factor. By using the Max (OR) operator, we simplify the decision-making process while maintaining both responsiveness and energy 
efficiency [62]. In this process, the degree of membership of different fuzzy inputs is used to determine the system’s response to 
those linguistic variables and their respective degrees of membership. With the Max (OR) operation method, the output value for 
the linguistic variables corresponds directly to the highest activation levels, as shown in the third column of the table presented in 
Fig.  8. We use the Minimum (Min) implication method, where the output membership function is truncated to the input’s degree of 
membership. This method ensures the system’s response is proportional to the input activation and complements the Max aggregation 
approach for efficient real-time control.

Following the aggregation of the output linguistic variables using the Max (OR) operation method, the next step is the 
defuzzification process. In this step, the fuzzy outputs obtained earlier are converted into a crisp value (𝑤) that can be utilized 
to adjust the setpoints.

The fuzzy output membership function employed in this study is a triangular membership function designed to calculate 𝑤, which 
controls the heating, cooling, humidification, or dehumidification setpoints (Fig.  7). It includes three categories: N, Z, and P, ensuring 
a consistent and adaptable control strategy across all of these processes. The P and N values of these membership functions determine 
whether the smart setpoint should follow outdoor conditions or adhere to predefined comfort setpoints, dynamically adjusting the 
setpoints based on real-time input data.
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Fig. 8. This diagram illustrates an example of the process of converting crisp input values into degrees of membership and applying the rule table to calculate 
the activation levels.

The defuzzification process utilizes the centroid method, also known as the center of gravity or center of area method, to compute 
a specific numerical output for the 𝑤 variable. This involves calculating the areas under the membership functions, denoted as 𝐴1
to 𝐴9, corresponding to the output fuzzy sets. The centroid method calculates the center of mass of these fuzzy sets by determining 
the weighted average of their areas. The formula used is 

Output = 𝐶 = 𝑤 =
∑

𝑖(𝐶𝑖𝐴𝑖)
∑

𝑖 𝐴𝑖
(8)

where 𝐶𝑖 represents the centroid of the 𝑖th fuzzy set, and 𝐴𝑖 is the area under the 𝑖th fuzzy set. By determining the weighted average 
of these centroids, the method effectively finds the balance point, yielding a crisp value that influences the final decision on setpoint 
adjustments to optimize both energy efficiency and occupant comfort.

In this example, using the activation levels in the third column of the table in Fig.  8, the respective allocated areas can be 
determined, which have been denoted in the fourth column. These areas have been color-coded to reflect the respective area in 
the next Fig.  9. In this figure, the centroid of the 𝑖th fuzzy set has been calculated, and then the centroid method has been used to 
obtain the center of gravity of all areas. The final value for this example input is 𝐶 = 𝑤 = −0.4, which is a negative value.

In this context, the negative value of 𝑤 adjusts the smart setpoint by moving it toward the setback condition (as illustrated in 
the decision tree in Fig.  3), whereas a positive value of 𝑤 forces the smart setpoint to converge toward comfort condition.
10 
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Fig. 9. Diagram representing the color-coded areas for each input. The Centroid method is applied to determine the center of gravity for all areas.

3. Results and discussion

3.1. Performance of the Weather-Adaptive Fuzzy Control (WAFC) in selected months

The model has been run for a whole year. The total runtime for a year is almost half an hour on 1 CPU, which is incredibly 
fast for a holistic urban physics model. In the following, we present the results for selected months with Air Change per Hour 
ACH = 1.5 h−1 (infiltration) to demonstrate how the model operates. Three months, such as January, representing a cold season, 
May, representing a shoulder season, and July, representing a warm season, were selected.

In January, during heating mode, the outdoor temperature is predominantly very cold, around 0 ◦C. Consequently, the indoor 
temperature alternates between the L setpoint (comfort condition) and the LL setpoint (setback condition). In our model, the 
occupancy behavior varies throughout the day, peaking at midnight and decreasing during midday (Fig.  10). At time 0 [hr] 
(midnight), the occupancy is at its maximum. According to the rules specified in Table  3 and the FLC rules, the indoor temperature 
converges to the comfort setpoint. In Fig.  11(a), we can note four temperature bands (LL, L, H, HH). These bands, as explained earlier, 
represent the constant comfort and setback setpoints. Additionally, there is a fuzzy-controlled real-time setpoint that continuously 
aims to create the most energy-efficient setpoint. The indoor temperature consistently converges to this setpoint, aligning with it; 
therefore, in the subsequent figures, we only display the indoor temperature. Also, in these figures, there are some important time 
11 
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Fig. 10. Variation of occupancy level throughout the month.

Fig. 11. (a) Indoor temperature variations and (b) sensible heating and cooling load variations, both for January, showing the system’s response to occupancy 
changes, electricity prices, and outdoor conditions.
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Fig. 12. (a) Indoor RH variations and (b) latent (Humidification/Dehumidification) load variations, both for January, showing the system’s response to occupancy 
changes, electricity prices, and outdoor conditions.

durations that highlight how the system and model work, and they have been annotated in the figures. For January, as can be seen 
in Fig.  11(b), the cooling sensible demand is zero, and the heating demand varies. As can be seen, when the outdoor temperature 
dives down, the heating load increases as the temperature difference between the setpoint and outdoor increases.

It is noteworthy that, within the comfort range defined between L and H levels, the system always selects the closest comfort 
level. For instance, during Winter, when the outdoor temperature is lower than the L level, the system converges to the L level to 
optimize energy efficiency. As the morning progresses and occupancy decreases while electricity prices increase, the model aims to 
adjust the indoor temperature closer to the outdoor temperature. However, reducing the temperature to very cold levels (e.g., 0 to 
5 ◦C) is impractical due to pre-heating requirements. Therefore, the indoor temperature is limited to an LL threshold, set at 18 ◦C. 
This behavior represents the basic operation of the modeled HVAC system when the outdoor temperature is either higher than HH 
or lower than LL.

The smart Relative Humidity (RH) control depicted in Fig.  12(a) demonstrates a stable toggling of humidification demand 
between the L and LL setpoints from 100 to 200 h. It is noteworthy that, during this month, due to the dry outdoor conditions, 
the building primarily experiences a humidification load. This fluctuation is influenced by occupancy and energy price inputs, as 
the outdoor humidity remains below the LL threshold. Around 220 h, when the outdoor RH exceeds the LL threshold, the indoor 
RH gradually converges to the outdoor conditions to save energy. These energy savings are reflected in the latent load calculations 
shown in Fig.  12(b). The respective range has been highlighted in this figure, illustrating a decline in humidification demand.
13 
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Fig. 13. (a) Indoor temperature variations and (b) sensible heating and cooling load variations, both for May, showing the system’s response to occupancy 
changes, electricity prices, and outdoor conditions.

May is a shoulder season, during which the building experiences heating, cooling, or neutral modes, resulting in a complex 
response to inputs. Fig.  13(a) illustrates the temperature behavior, while Fig.  13(b) shows the corresponding sensible heating and 
cooling loads. The right side of Fig.  13(a) displays the four temperature bands, as represented in Fig.  2, marked in blue and red. 
Analyzing the temperature and load profiles, it is evident that the building is predominantly in heating mode during the first half 
of the month, which aligns with the blue threshold lines indicating comfort and setback criteria for control, particularly between 
400 and 600 h. In the second half of the month, as the outdoor temperature rises, the system occasionally enters a neutral mode, 
indicated by the absence of red or blue lines, where no sensible heating or cooling is required. This occurs when both sensible 
load calculations for cooling and heating demand yield negative values (according to Eq.  (1)). During these periods, the indoor 
temperature remains within the comfort zone when occupancy is high, whereas, when occupancy is low, the indoor temperature 
may fall outside the comfort range.

In May, as the outdoor temperature fluctuates, the system responds by balancing comfort and energy efficiency. Around 700 
h, the outdoor temperature rises from the L (blue) setpoint to approximately 28 ◦C, causing the indoor temperature to converge 
towards the outdoor temperature within the comfort range (between L and H). To minimize HVAC loads, the system allows the 
indoor temperature to follow the outdoor condition. As the temperature rises beyond H (blue) to 28 ◦C, it exceeds the comfort 
14 
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Fig. 14. (a) Indoor RH variations and (b) latent (Humidification/Dehumidification) load variations, both for May, showing the system’s response to occupancy 
changes, electricity prices, and outdoor conditions.

zone. However, since occupancy is low, the indoor temperature is still allowed to converge with the outdoor condition until around 
720 h. At this point, when the outdoor temperature drops below L (blue) and occupancy is high, the system maintains the indoor 
temperature within the comfort level. This cycle repeats around 725 h. After the high occupancy period ends and with the outdoor 
temperature below the LL (blue) setpoint, the system prioritizes energy savings, allowing the indoor temperature to converge with 
the outdoor temperature, capped at the LL level.

In May, the smart humidity control system effectively balances energy efficiency and occupant comfort, responding to dynamic 
humidity conditions. Fig.  14(a) shows the behavior of the smart humidity control, while Fig.  14(b) highlights the presence of both 
humidification and dehumidification loads throughout the month. During the period between 200 and 300 h, the relative humidity 
(RH) profile fluctuates between the L and LL levels, representing comfort and setback conditions. These fluctuations are primarily 
influenced by occupancy and electricity pricing, with outdoor humidity consistently below the LL threshold. Around 420 h, the 
outdoor RH exceeds both the LL and L levels, prompting the indoor RH to adjust to these levels to conserve energy. As occupancy 
decreases, the indoor RH follows outdoor conditions more closely, further optimizing energy efficiency. There are also instances, 
highlighted in Fig.  14(a), where outdoor RH exceeds the comfort level (H), but due to occupancy and price considerations, the indoor 
RH remains at H to prioritize comfort. Conversely, later occurrences show that when occupancy and price favor energy savings, the 
indoor RH converges to the outdoor level and stabilizes at HH, illustrating the adaptive nature of the smart control system.

July, being the warmest month, challenges the building’s cooling system with significant temperature fluctuations. As shown 
in Fig.  15(a), the outdoor temperature often exceeds the HH setpoint (day) and drops below the LL setpoint (night). During the 
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Fig. 15. (a) Indoor temperature variations and (b) sensible heating and cooling load variations, both for July, showing the system’s response to occupancy 
changes, electricity prices, and outdoor conditions.

day, when the outdoor temperatures peak, occupancy is low and energy prices are high, the building setpoint follows the outdoor 
temperature until it reaches the HH threshold, minimizing sensible cooling loads. At night, when temperatures drop and occupancy 
is high, the indoor temperature adjusts to the outdoor temperature until it reaches the L level, ensuring thermal comfort. Although 
energy prices are lower during the night, the FLC prioritizes occupant comfort using the Max operation, adjusting the setpoint 
accordingly. Consequently, the temperature management strategy emphasizes occupant comfort over cost savings. Overall, as seen 
in Fig.  15(b), July places the building predominantly in cooling mode due to these high-temperature fluctuations. The variation of 
the 𝑤 factor for temperature over time is presented in Fig.  16, for the month of July.

In July, the relative humidity (RH) remains largely within the comfort zone, with indoor RH typically aligning with the target 
range, as shown in Fig.  17(a). On occasions where outdoor RH is high, the system maintains indoor RH near the H setpoint to ensure 
comfort. Conversely, during periods of low outdoor RH, particularly near the LL threshold, when occupancy is low and energy prices 
are high, the system allows the indoor RH to drop to LL to save latent load. These variations in latent load are depicted in Fig.  17(b). 
The variation of the 𝑤 factor for humidity over time is presented in Fig.  18, for the month of July.
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Fig. 16. Variations of the corresponding 𝑤 factor for temperature across time for the month of July.

Fig. 17. (a) Indoor RH variations and (b) latent (Humidification/Dehumidification) load variations, both for July, showing the system’s response to occupancy 
changes, electricity prices, and outdoor conditions.
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Fig. 18. Variations of the corresponding 𝑤 factor for humidity across time for the month of July.

Fig. 19. Comparison of monthly sensible heating demand across four thermostat-humidistat configurations, illustrating the reduction in heating demand achieved 
with smart setpoint control.

The variation of the 𝑤 factor for temperature and humidity (Figs.  16 and 18, respectively) illustrate how the fuzzy logic controller 
adjusts the setpoints dynamically based on the input variables, primarily occupancy levels and electricity price. The results show 
that the trends for both temperature and humidity 𝑤 factors closely follow the occupancy patterns, indicating that occupancy has 
a dominant influence on the system’s decision-making process.

3.2. Annual performance given four thermostat-humidistat configurations

The following four figures present a comparative analysis of monthly energy demands across four distinct thermostat-humidistat 
configurations, highlighting the influence of smart control systems on energy consumption for sensible cooling/heating and latent 
humidification/dehumidification in various seasonal conditions.

Fig.  19 demonstrates how incorporating smart technology into the thermostat significantly reduces sensible heating demand 
year-round. Configurations using a smart thermostat, regardless of whether the humidistat is basic or smart, show considerably 
lower heating demands compared to those using a basic thermostat. This effect is especially pronounced during Winter, when 
heating requirements peak. The figure reveals that the curves representing the basic thermostat and basic humidistat and the basic 
thermostat and smart humidistat configurations are identical, implying that the smart humidistat does not notably influence heating 
demand when used with a basic thermostat. Likewise, the curves for the smart thermostat and basic humidistat and smart thermostat 
18 
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Fig. 20. Sensible cooling demand comparison for various configurations, illustrating increased cooling load with smart setpoint control from May to September 
and limited impact of the smart humidistat.

Table 4
Energy loads [W-hr m−2 month−1] for smart and basic modes in July.
 Mode Infil. Vent. Win. Wall Ceil. Mass Int. Tran. Total load 
 Smart −854 −303 −427 1 669 2007 3285 9186 11384 26147  
 Basic −37 −13 −19 631 2324 1600 6772 10147 21406  

and smart humidistat configurations are also aligned, indicating that the smart humidistat has minimal impact when paired with a 
smart thermostat.

Fig.  20 illustrates that the use of the smart thermostat results in an increased cooling load, which represents a negative effect 
observed from May through September. This effect is particularly noteworthy because it contrasts with the expected energy savings 
associated with smart technologies. The reasons for this behavior are discussed in detail in the following paragraphs. Additionally, 
the figure shows that the smart humidistat is ineffective in reducing sensible cooling loads, as its influence is limited primarily to 
latent loads.

Table  4 presents the breakdown of sensible cooling loads for both smart and basic buildings. The summation of all loads is 
provided in the last column. The summation accounts for the hours when the building is under active cooling mode (i.e., the 
components of the load under neutral conditions are not accounted for). The table shows the breakdown of the components of load 
in Fig.  20 for July. The table reveals that the smart system outperforms the basic system in terms of infiltration, ventilation, and 
window flux loads, as the loads are more negative. However, in terms of conductive heat transfer, through walls and mass, the basic 
system performs better, resulting in a higher overall cooling load for the smart system.

During the warmer months in Canada, when the system operates in cooling mode (starting in late May, as shown in Fig.  13(a), 
and lasting until September), the outdoor temperature typically fluctuates between the setpoints. In the smart approach employed in 
this study, the system attempts to converge indoor temperatures to the outdoor temperature, so the air exchange loads are reduced 
by minimizing the temperature difference between the setpoint and outdoor temperature. This leads to a reduction in air exchange 
loads, including infiltration and ventilation. Table  4 confirms that the infiltration and ventilation loads are significantly lower in 
the smart mode.

However, again referring to Table  4, the use of the smart thermostat also results in a considerable increase in building structure 
temperatures (wall and mass), which can be attributed to greater temperature fluctuations in the building under smart control. For 
instance, at midday, when the outdoor temperature is high, the system allows the building to warm up to conserve energy. Later, 
as the cooling need is required due to high occupancy, the thermal inertia of the building’s structure causes a delayed response, 
resulting in a temperature differential between the structure and the setpoint, thereby increasing the corresponding components of 
load (wall and mass). This situation is particularly evident during periods of rapid temperature changes. Further, under the smart 
mode, the number of hours that the building is cooled is greater than in the basic mode. As stated earlier, the components of the 
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Fig. 21. Humidification demand comparison for various configurations, illustrating decreasing latent load with smart setpoint control, particularly for cold 
months.

load are only summed under cooling conditions. Therefore, this results in other components of the load being greater for the smart 
mode, such as the internal load.

Fig.  21 shows that the humidification demand is subject to significant seasonal variation, with the highest demand observed 
during the colder months, such as January and February. This pattern is consistent with the increased need for humidification in 
Winter due to lower ambient humidity levels in the climate of Toronto. When cold outdoor air infiltrates indoor spaces and is heated 
to room temperature, its relative humidity decreases significantly. This dry air can lead to discomfort and health issues, necessitating 
increased humidification to maintain indoor thermal comfort. In contrast, during the warmer months, such as July and August, the 
humidification demand is minimal across all configurations, likely due to naturally higher levels of environmental humidity in the 
climate of Toronto.

Among the four configurations, the combination of a smart thermostat with a smart humidistat demonstrates the most consistent 
reduction in energy consumption throughout the year. This result highlights the effectiveness of advanced control algorithms in 
adapting to seasonal and daily fluctuations and maintaining optimal indoor humidity with minimal energy input. By contrast, the 
combination of a basic thermostat and a basic humidistat consistently shows the highest humidification demand across most months, 
underscoring the inefficiency of legacy systems that lack dynamic control capabilities.

The intermediate configurations, those with either a smart thermostat paired with a basic humidistat or a basic thermostat paired 
with a smart humidistat, exhibit performance trends that vary depending on the season. For instance, during months with moderate 
ambient humidity, such as in the Spring and Fall, these configurations occasionally approach the efficiency of the smart-smart 
combination, suggesting that even partial system upgrades can yield measurable improvements. However, during peak-demand 
months like January, these intermediate configurations fail to match the energy efficiency of a fully smart system, reinforcing the 
cumulative benefits of integrating smart technologies at both control points.

Fig.  22 builds on the findings of the previous analysis of humidification demand by providing a complementary examination of 
dehumidification demand across the same four configurations of thermostat and humidistat systems. Together, these figures offer 
a nuanced view of the seasonal dynamics of indoor air quality control and the energy implications of employing different levels of 
system sophistication.

While the humidification demand was observed to peak during the colder months, reflecting the need to compensate for 
low ambient humidity, the current figure reveals the opposite pattern for dehumidification demand. Here, the highest energy 
consumption occurs during the Summer months, particularly in July and August, when elevated ambient humidity levels necessitate 
active dehumidification. This seasonal inverse relationship between humidification and dehumidification demands underscores the 
dual challenges faced by HVAC systems in maintaining year-round indoor comfort.

The performance trends observed in the dehumidification figure mirror those seen for humidification. The smart thermostat 
and smart humidistat combination exhibit a low, but not the lowest, dehumidification demand across all months, demonstrating 
the robust efficiency of fully intelligent systems in adapting to seasonal variations. This configuration’s ability to optimize both 
heating and cooling processes underscores its suitability for year-round energy savings. Conversely, the basic thermostat and basic 
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Fig. 22. Dehumidification demand comparison for various configurations, illustrating the nuances in latent load with the utilization of smart setpoint control.

humidistat combination once again show the highest energy demand, indicating inefficiency in managing dehumidification as well 
as humidification.

By comparing the results across both figures, a clear narrative emerges: smart HVAC systems significantly enhance energy 
efficiency for both humidification and dehumidification tasks, especially during their respective peak seasons. The complementary 
nature of these findings highlights the importance of adopting intelligent systems capable of dynamically responding to environmen-
tal conditions year-round. The combined evidence strengthens the case for fully integrated smart systems as a critical step toward 
achieving energy sustainability in climate control technologies.

3.3. Sensitivity to Air Changes per Hour (ACH)

The primary impact of adding smart features to setpoint control lies in the reduction of air exchange loads. Therefore, in this 
section, the sensitivity of the system to the Air Change per Hour (ACH) rate (infiltration) is analyzed. ACH represents the rate of 
air leakage in a building, where higher ACH values indicate a leakier building. The data is presented for three air exchange rates: 
3, 1.5, and 0.5 h−1. Each bar in the following figures represents the energy savings for a specific month.

Fig.  23, which presents the sensible heating demand, shows that higher ACH results in greater savings. This behavior is consistent 
across all months and is also evident for humidification, as depicted in Fig.  25. During colder months, infiltration introduces 
unconditioned air, which is much colder than the comfort temperature, thereby increasing the heating demand. Naturally, as more 
air enters the building, more unconditioned air needs to be treated. By using smart setpoint control, the system lowers the setpoint 
as needed to reduce the load. Unlike other smart control designs that require very airtight buildings to be effective, this approach 
shows promise for older buildings, which typically have higher air leakage rates. This indicates that the leakier the building, the 
more effective the smart controller becomes.

For cooling, however, there is no consistent trend in energy savings when using smart technologies, as far as different Air Change 
per Hour (ACH) rates (infiltration) are concerned. As noted earlier, the use of smart control results in increased cooling loads. The 
reasons for this were discussed in previous sections. Figs.  24 and 26 show the savings in sensible and latent cooling demands for 
different values of ACH compared to a base case, respectively.

Our results indicate that the total annual energy savings for cooling, heating, dehumidification, and humidification for an air 
change rate of ACH = 3 h−1, which is based on the ASHRAE standard (Table  1) are −31, 133, −5, and 141 kW-hr m−2, respectively. 
Although the smart control mode results in an increase in energy demand for cooling and dehumidification, the overall annual 
performance remains advantageous.

Specifically, when the smart mode is enabled throughout the year, a net energy saving of 238 kW-hr m−2 can still be achieved. 
This positive outcome is primarily due to significant savings in heating and humidification, which outweigh the additional energy 
costs incurred during cooling and dehumidification. Furthermore, if the smart mode is selectively disabled during the Summer 
months when it tends to worsen cooling performance, the potential savings increase to 274 kW-hr m−2. In both cases, the control 
strategy represents a promising opportunity for optimizing energy efficiency without compromising comfort during warmer months.
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Fig. 23. Sensible Heating demand savings under different Air Change per Hour (ACH) rates. Higher ACH values result in increased energy savings, demonstrating 
the effectiveness of smart control in reducing heating loads for leaky buildings.

Fig. 24. Sensible cooling demand savings under different Air Change per Hour (ACH) rates.

Fig. 25. Humidification demand savings under different Air Change per Hour (ACH) rates. Higher ACH values lead to greater savings, especially during colder 
months, as smart control adjusts the setpoint to minimize the load.
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Fig. 26. Dehumidification demand savings under different Air Change per Hour (ACH) rates.

4. Conclusions and recommendations

This study analyzed the impact of smart thermostat and humidistat configurations on building energy efficiency, focusing on 
heating, cooling, humidification, and dehumidification across different seasonal conditions and air change rates (ACH). The novelty 
is embedded in considering external weather conditions, electricity prices, and occupancy levels in a fuzzy control framework to 
adapt indoor setpoints with varying outdoor conditions. We integrated a Fuzzy Logic Control (FLC) scheme into the Vertical City 
Weather Generator (VCWG v3.0.0) and simulated a detached residential building in the climate of Toronto for a full year in 2020. 
The results demonstrated both the potential benefits and limitations of employing smart control features to dynamically adjust 
setpoints based on environmental, occupancy, and energy price inputs.

• The use of smart control showed clear advantages for heating and humidification, underscoring the effectiveness of the 
Weather-Adaptive Fuzzy Control (WAFC) system in optimizing HVAC operations. The use of smart control showed significant 
advantages for heating and humidification. During colder months, the smart thermostat effectively reduced heating loads 
by adjusting setpoints to align with outdoor conditions and occupant requirements, achieving energy savings of up to 133 
kW-hr m−2. For humidification, the system saved 141 kW-hr m−2 by aligning indoor RH conditions with outdoor RH levels 
when possible, especially in buildings with high air leakage. These findings confirm the WAFC’s ability to optimize HVAC 
performance in scenarios with high infiltration rates, addressing the challenges associated with older, less airtight buildings.

• Cooling and dehumidification, however, presented challenges. During the warmest months, such as July and August, the smart 
control mode increased cooling demand by 31 kW-hr m−2, primarily due to temperature fluctuations and higher building 
structure (wall and mass) loads. Similarly, dehumidification energy demand increased by 5 kW-hr m−2. These results suggest 
that the smart mode is less effective during the warm season, leading to suboptimal cooling performance. These findings reveal 
a trade-off in smart control performance during the cooling season, indicating the need to further refine the system to address 
limitations related to thermal inertia and fluctuating outdoor conditions.

• Despite these challenges, enabling the smart mode throughout the year still resulted in a net energy saving of 238 kW-hr m−2. 
Moreover, selectively disabling the smart mode during Summer increased potential savings to 274 kW-hr m−2, emphasizing the 
benefit of a seasonal and flexible control strategy. This approach balances energy efficiency and occupant comfort, suggesting 
the value of employing smart control features selectively based on seasonal needs.

• Unlike conventional smart control systems, which often require airtight buildings, this strategy shows benefits in existing and 
leakier buildings by reducing building energy loads due to air exchange. This makes it a practical solution for older buildings 
with higher air leakage rates. This highlights the WAFC’s suitability for retrofitting older buildings, demonstrating its potential 
for widespread applicability in diverse building types.

In conclusion, while the smart thermostat and humidistat control strategy demonstrated considerable benefits for heating and 
humidification, they introduced challenges for cooling and dehumidification. A hybrid control strategy, applying smart features 
only during optimal seasons, could maximize energy savings and minimize drawbacks. Such adaptability makes the control strategy 
a promising solution for enhancing energy efficiency across a variety of building types, contributing to more sustainable energy 
management in HVAC systems.

Future investigations could explore the potential for energy savings using this technology in different climate zones. Future 
work may also involve developing the FLC to work with predictions of outdoor temperature and humidity. For example: (1) a 
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probabilistic model that utilizes historical hourly weather data to represent each variable (e.g., temperature, humidity) as a normal 
distribution. By sampling values from these distributions, the model generates realistic predictions of outdoor conditions that 
account for historical trends and uncertainties. This probabilistic approach provides the system with near-future weather estimates, 
effectively serving as a predictive control mechanism for dynamic HVAC optimization [63]; (2) a Markov Chain model, where the 
hourly sequence of past weather conditions in the last few days can provide a near term forecast of outdoor weather conditions. 
This approach requires a long dataset of past weather over multiple decades to provide reliable probabilities for occurrence of 
future weather conditions [64,65]; (3) actual weather forecasting using numerical weather prediction models such as the Weather 
Research and Forecasting (WRF) model [66]; and (4) Model Predictive Control (MPC), where the near-future weather conditions 
are predicted using a dynamic/mathematical model [27,67].
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